您好!欢迎访问上海茂默科学仪器有限公司网站!
全国服务咨询热线:

13472768389

NEWS新闻动态
首页 > 新闻中心 > 读懂工业大数据,不得不看的一篇文章(下)

读懂工业大数据,不得不看的一篇文章(下)

更新时间:2018-06-25      点击次数:1367

二、工业大数据的特点和分类

不管是工业自动化、还是工业智能化(工业4.0)、或者是工业互联网概念,他们的基础是工业数据。

随着行业发展,工业企业收集的数据维度不断扩大。主要体现在三个方面:

1.是时间维度不断延长。经过多年的生产经营,积累下来历年的产品数据、工业数据、原材料数据和生产设备数据;
2.是数据范围不断扩大。随着企业信息化建设的过程,一方面积累了企业的财务、供应商数据,也通过CRM系统积累了客户数据,通过CAD等积累了研发过程数据,通过摄像头积累了生产安全数据等,另一方面越来越多的外部数据也被收集回来,包括市场数据、社交网络数据、企业舆情数据等;
3.是数据粒度不断细化。从一款产品到多款、多系列产品使得产品数据不断细化,从单机机床到联网机床,使得数据交互频率大大增强;加工精度从1mm提升到0.2mm,从5分钟每次的统计到每5秒的全程监测,都使得采集到的数据精细度不断提升。

以上三个维度终导致企业所积累的数据量以加速度的方式在增加,构成了工业大数据的集合。不管企业是否承认,这些数据都堆砌在工厂的各个角落,而且在不断增加。

再从企业经营的视角来看待这些工业数据。可以按照数据的用途分成三类:

是经营性数据,比如财务、资产、人事、供应商基础信息等数据,这些数据在企业信息化建设过程中陆陆续续积累起来,表现了一个工业企业的经营要素和成果。
第二类是生产性数据,这部分是围绕企业生产过程中积累的数据,包括原材料、研发、生产工艺、半成品、成品、售后服务等。随着数字机床、自动化生产线、SCADA系统的建设,这些数据也被企业大量记录下来。这些数据是工业生产过程中价值增值的体现,是决定企业差异性的核心所在。
第三类是环境类数据,包括布置在机床的设备诊断系统,库房、车间的温湿度数据,以及能耗数据,废水废气的排放等数据。这些数据对工业生产过程中起到约束作用。
从目前的数据采用情况看,经营类数据利用率高,生产性数据和环境类数据相比差距比较大。从未来数据量来说,生产线数据在工业企业数据中的占比将越来越大,环境类数据也将越来越多样化。

一般意义上,大数据有具有数据量大、数据种类多、商业价值高、处理速度高,在此基础上,工业大数据还有两大特点。

一是准确率高,大数据一般的应用场景是预测,在一般性商业领域,如果预测准确率达到90%已经是很高了,如果是99%就是了。但在工业领域的很多应用场景中,对准确率的要求达到99.9%甚至更高,比如轨道交通自动控制,再比如定制生产,如果把甲乙客户的订单参数搞混了,就会造成经济损失。
二是实时性强,工业大数据重要的应用场景是实时监测、实时预警、实时控制。一旦数据的采集、传输和应用等全处理流程耗时过长,就难以在生产过程中发挥价值。

 

工业大数据是企业生产经营的一次重大变革,对于工业化、信息化都还没有完成的工业企业而言,数据化时代又到来了,挑战很大。

后,工业大数据建设抓住两个板子作为突破点。一个是长的板,也就是梳理产品(工业)竞争力强的在哪里,继续深挖下面的数据价值,围绕这一块的工业数据构建产品和服务能力;另一个是短的板,就是影响工业企业发展的痛点在哪里,成本、市场、还是供应链,还是能耗?在数据化时代下,寻找机遇大数据的解决方案。

版权所有 © 2024 上海茂默科学仪器有限公司 All Rights Reserved    备案号:沪ICP备15045144号-2    sitemap.xml    管理登陆    技术支持:化工仪器网